SUPERLINEAR CONVERGENCE OF AN INTERIOR-POINT
METHOD FOR MONOTONE VARIATIONAL INEQUALITIES

DANIEL RALPH* AND STEPHEN J. WRIGHT

Abstract. We describe an infeasible-interior-point algorithm for monotone variational inequality
problems and prove that it converges globally and superlinearly under standard conditions plus a
constant rank constraint qualification. The latter condition represents a relaxation of the two types
of assumptions made in existing superlinear analyses; namely, linearity of the constraints and linear
independence of the active constraint gradients.
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1. Introduction. We consider the monotone variational inequality over a closed
convex set C C RY:

(1) Find z € C such that (2 — 2)7®(z) >0, forall 2/ €C.

The mapping & : RY — RY is assumed to be continuously differentiable (C1) and
monotone; the latter property means that

(2 = 2)T(®(z') = B(2)) >0 forall 2/, 2 € RY.

We assume that C is defined as an intersection of finitely many algebraic inequalities;
that is,

(2) ¢ = {zeRV|g(z) <0},

where ¢ : RY — RF is a C? function for which each component function g;, i =
1,2,..., P, is convex.

The mixed nonlinear complementarity (NCP) formulation of this problem is: Find
the vector triple (z, A, y) € RV*2P guch that

®) =[N ] iz am=o

where f: RN*F 5 RY is the C* function defined by
(4) [z 0) = B(z) + Dy(z)7 A

Note that f is monotone with respect to z € RY for all vectors A € R with nonneg-
ative components (that is, A € Ri). The mapping

) - [ 16N ]

—9(2)
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1s monotone because monotonicity of & and of each function Dg; means that its
Jacobian matrix

D.f Dg” DO(z) + S0 NiD2%gi(z)  Dg(z)T
(6) [—Dg ng]:[ (2) _lejg(z) 9i(z) gE))

is positive semidefinite for all (z, A) € RY x RI_:.

Tt is well known [3] that, under suitable conditions on ¢ such as the well-known
Slater constraint qualification, z solves (1) if and only if there exists a multiplier A
such that (z, A) solves (3).

We solve (1) by a method based on the interior-point algorithm of Wright and
Ralph [18]. Our new algorithm differs from the one in [18] in that it is simpler to
specify and can be adapted to the case of mized NCP. In fact, the new algorithm is a
natural extension of the algorithm of Wright [14] for monotone linear complementarity
problems.

We show that under certain assumptions the method converges globally and su-
perlinearly to the solution set of (3), even in some situations in which the solution
does not satisfy a strong uniqueness and nondegeneracy condition.

Superlinear convergence for interior-point methods was discussed first by Zhang,
Tapia, and Dennis [22]; see also Ye, Giiler, Tapia, and Zhang [21]. A recent paper by
Sun and Zhao [11] presents a feasible interior-point method for monotone variational
inequalities where the set C is polyhedral, that achieves global and local quadratic
convergence. Infeasible-interior-point methods for the latter class were described by
Wright in [15], with improvements in [13, 14]. For nonlinear monotone complemen-
tarity problems, Wright and Ralph [18] describe a superlinearly convergent method
that requires invertibility of the principal submatrix of the Jacobian corresponding to
basic rows and columns. This condition actually guarantees uniqueness of the solution
point (z*,A*), in particular, uniqueness of the multiplier A* in (3). Similar assump-
tions almost always are made in the asymptotic analysis of nonlinear programming
algorithms. The main point of this paper is to show that superlinear convergence also
occurs under weaker assumptions that allow the multiplier A to be nonunique. In fact,
the algorithm here is the only one we know of for nonlinear programs with nonlinear
constraints and nonunique multipliers for which convergence is superlinear.

We briefly mention some related work in the area of sequential quadratic program-
ming and Newton methods for nonlinear programming and variational inequalities but
do not address the burgeoning related area of nonsmooth equations. Like much of
the literature concerning superlinear local convergence (for example, Bonnans [1] and
Pang [7]), our main result, Theorem 3.3, assumes that certain conditions hold at a pre-
existing solution point. Such results are called “point-of-attraction” results, but unlike
Theorem 3.3, the hypotheses needed for superlinear convergence in previous results
known to the authors imply local uniqueness of the solution. Kantorovich-Newton
results (Josephy [5]) are of a slightly different nature: They specify conditions on the
system and the initial point that ensure both existence of and convergence to a locally
unique solution point. For both types of results, local uniqueness of the pair (z*, A*)
is used to prove superlinear convergence.

Our use of weaker-than-usual nondegeneracy assumptions has practical relevance
since, for large-scale problems,; degeneracy or near-degeneracy at solution points is
typical. In this paper, we assume that the active constraint gradients satisfy a constant
rank constraint qualification or CRCQ at the solution. This condition “interpolates”
between the two most commonly made assumptions—linear independence of the active
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constraint gradients and linearity of the constraint function g(z)—but is weaker than
both. Our paper does not resolve the question of whether the CRCQ is necessary for
superlinear convergence. Moreover, in practice, the issues are somewhat clouded by
numerical effects: Roundoff error in the computed solutions cause the implemented
algorithm to behave slightly differently from the theoretical predictions. We examine
this issue further in Section 7.

Possibly the best known application of (1) is the convex programming problem

defined by
(7) min ¢(z) subject to z€C,

where ¢ : RY — Ris C? and convex. Let ® = D¢. It i1s easy to show that the
NCP formulation (3),(4) is equivalent to the standard Karush-Kuhn-Tucker (KKT)
conditions for (7). If a constraint qualification holds, then solutions of (7) (and (1))
correspond, via KKT multipliers, to solutions of (3)—(4).

Solutions of (1) and (7) coincide when a constraint qualification is satisfied.

The paper 1s developed as follows. In the remainder of this section, we summarize
our notation and terminology. In Section 2, we describe the algorithm for solving (3),
omitting some of the details because of the similarity to the algorithm of Wright and
Ralph [18]. In Section 3, we prove the global convergence result for this algorithm
and state the local superlinear convergence result. The analysis in this section mirrors
that of [18] but differs in some of the details. The remainder of the paper is devoted
to outlining and proving the superlinear convergence theorem. In Section 4 we state
and discuss the assumptions that are used in this theorem. Section 5 shows that
the steps generated by the algorithm during its final stages satisfy a certain critical
bound. We divide Section 5 into subsections and provide ample motivating discussion
so that readers can see the thrust of our argument without our going into the details.
Section 6 describes conditions under which one of our key assumptions—existence of
a limit point—is satisfied, and also proves some auxiliary results that follow from the
assumptions of Section 4. Finally, we discuss computational experience and outline
some open questions in Section 7.

Notation and Terminology. Unless otherwise specified, || - || denotes the Eu-
clidean norm of a vector, while

RE={yeRP|y>0}, R, ={yeRl|y>0}

For any two vectors ¢ and d, we frequently use (c,d) as shorthand for (¢, d¥)?. The
vector (1,1,...,1) is denoted by e, while z; is obtained by replacing all negative
components in the vector z by zero. The closed unit ball is denoted by B. Derivatives
are indicated by D, or D, for a partial derivative with respect to z.

Tteration indices (usually k) appear as superscripts on vectors and matrices and
as subscripts on scalars. Subscripts are used to indicate components of vectors and
matrices.

If 9 is a function mapping Ry to Ry, we write (7) = O(7) if there are constants
7> 0 and C > 0 such that ¢(r) < Cr for 7 € (0, 7].

The kernel or null space of a matrix H € RF*? is
ker H = {d € R!|Hd =0},
while the range space is denoted by
ran H = {Hd|d € R},
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Given § 27 C {1,2,...,ptand 0 £ J C {1,2,...,q}, we define three submatrices of

H as follows:
Hzg = [Hijliez jes, H.7 = [Hijli=1,..pjed, Hz =[Hiliezj=1,...q-

If weR and 7T C {1,2,...,p}, then wz denotes the subvector [w;];cz. In dealing
with the function ¢ : RY — RF in (2), we use Dgz(z) to denote the |Z| x N Jacobian
of g7 with respect to z.

Often the arguments are omitted from the functions and Jacobians f(z, A), ¢(z),
D, f(z,A), and so on. In such cases, the arguments should be assumed to be z, A, and
y, or any applicable combination thereof.

We use S to denote the solution set for (3) and S, » to denote its projection onto
its first N + P components; that is,

(8) S=A{(z,A\y)]|(z, A y) solves (3)}, Sex =A{(2, M) [(2,A,—g(2)) € S}.

The set § is convex if the function f given by (4) is monotone, as we will assume later;
this follows from Proposition 3.1 of Harker and Pang [3] because the NCP (3) is then
equivalent to a monotone variational inequality over a closed convex set. Convexity
of 8, » also follows. In this case, we can partition {1,2,..., P} into two index sets B

and A such that
(9) Ay =0, yp =0, all (z*,A*,y*) € S.

The solution (z*, \*, y*) is strictly complementary if \* + y* > 0; that is, Aj; > 0 and

Yy > 0. We also use this term when referring to just the z and A components of the

solution. That is, we say (2, A*) is strictly complementary if A > 0 and gar(z*) < 0.
The distance of a vector w € R to a set 7 C R is

disty (w) = inf{||w — w*||| w* € T}.

Given H C RF*? we say H has constant column rank (CCR) if for each sequence
{H*} C H converging to some H € RP*? and each ) # J C {1,2,...,q}, we have

rank H,kj — rank H.7,

that is, rank H*, = rank H. 7 for all k sufficiently large.
Given the current point (z, A, y) and a search direction (Az, AX Ay), we define
the complementarity measure p as

p=A"y/P,
and the intermediate quantities (z(a), A(«), y(a)) and p(e) by
(2(a), Aa), y(a)) = (2, A 9) + a(Az, AN Ay), p(a) = Ma) y(a)/P.

2. An Algorithm for Mixed NCP. We now outline an infeasible-interior-
point algorithm for mixed NCP that synthesizes two earlier methods: the algorithm
described by Wright and Ralph [18] for monotone NCP and the algorithm of Wright
[14] for linear complementarity problems. Neither of these formulations applies ex-
plicitly to the mixed problem. In the case of linear problems, a mixed framework
1S unnecessary in any case, since there are strong equivalence relationships between
mixed problems and nonmixed problems.
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Our description 1s terse because much of the motivation can be found in the
papers cited above.

Given a starting point (2%, A%, %) with (A% %) > (0,0), the algorithm generates
a sequence of iterates (2%, \* y*) that satisfies this same positivity condition. For
each vector triple (z, A, y) for which (A, y) > 0, we define the residuals 7; and r4 by

0) [N ][]

rg(2,y) y+9(z)

Another useful quantity is the vector e, defined by e = (1,1,...,1)T. As is usual in
descriptions of interior-point methods, we turn positive vectors into diagonal matrices
by capitalizing their names; that is,

A =diag(A, Az, ..o, Am), Y =diag(y1,y2, - -, Um)-

When (z,A,y) = (2%, A\* y*), we sometimes attach a subscript or superscript k to the
quantities g1, 7, A, Y to make the dependence on (2%, \*, y*) explicit.

The algorithm can be thought of as a modified Newton algorithm applied to the
following system of constrained nonlinear equations.

re(z,A)
(11) rg(zay) = Oa (Aay) Z 0
—AYe

The “modifications” are needed to keep A¥ and y* from prematurely approaching the
boundary of the feasible region defined by the conditions ¥y > 0 and A > 0. Line
searches are used and, on some iterates, the search direction is skewed toward the
interior of the positive orthant, so that longer steps can be taken without violating
positivity. Near the solution, the algorithm reverts to pure Newton steps, allowing
the rapid local convergence properties of this method to take effect.

The major computational operation in the algorithm is the repeated solution of
2P + N-dimensional linear systems of the form

D.f DgT" 0 Az re(z,A)
(12) —Dyg 0 —1 AX | = rq(2,y) ,
0 Y A Ay —AYe+ apuge

where the centering parameter & lies in the range [0, %] These equations are simply

the Newton equations for the nonlinear system mentioned earlier, except for the &
term. The algorithms searches along the direction obtained from (12).

In the algorithm of Wright and Ralph [18] (which applies to nonmixed NCP), the
search for a takes place along a curved arc rather than a straight line. The curvature
on this arc ensures that the residual term decreases linearly with a.. It 1s not clear how
to extend this strategy to the mixed case, so the algorithm in this paper uses a simpler
straight-line search. The global and local convergence properties are essentially the
same as in [18].

At each iteration, the algorithm computes a fast step—a pure Newton step for
which & = 0 in (12). If the fast step fails to give a sufficiently large decrease in p,
we revert to a safe step by assigning a positive value to &. This modification allows
a longer step to be taken, so that a certain minimal amount of progress toward the
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solution can be made. In choosing the step length «, we require not only that for all
iterates (2%, A% y*), (A\¥, y*) remain strictly positive, but also that they satisfy

for positive values of v, bounded away from zero. This condition ensures that the
pairwise products A;y; stay roughly in balance as they approach zero, so that no
single one of them vanishes much faster than the others. On fast steps, we expand
this region by decreasing ~ slightly, to allow steps of length near 1 to be taken.

The algorithm is parametrized by a variety of positive scalar constants, which we
specify now for easy reference. Their roles are explained as they arise in subsequent
discussions:

Y€1), Fe(0d), ae(01, we(01), Fe(0,1),
(14) Brmin > 0 such that ||rf|| < Bminpo and ||| < Pminpto,
Bmax = Bmin €xp(3/2), 0 < Ymin < Ymax < 3,
7€(0,%),  pe(0,min((39)"7,1~x))

where exp(-) is the exponential function. The starting point (2%, A%, y°) is assumed to
satisfy

(15) /\?y? 2 Ymax Ho-
The main algorithm can now be specified.
to = 0; Y0 < Ymax; Bo < Bmin;
for £=0,1,2,...,
if Hi — 0,
terminate with solution (z%, A\¥ | y*);

(LML ALY o fast(2F AR vt vk, Br);

if pegr < pp
Vht1 € Ymin + 7 (Ymax — Ymin); Brg1 = (L+5%H) B
lppr 1 +1;

else
(LML AL o safe(2f AR oF e, e, Br);
Vel < Ye; Prg1 < Ok;
tee1 < Tk

end for.

The fast step is taken only if it decreases the complementarity gap p by at least a
factor of p. The counter #; keeps track of the number of successful fast steps prior to
iteration k. As we see in the definitions of the subroutines fast and safe below, the
value of {; indirectly governs the distance «y that we move along the current search
direction.

The coefficient matrix in (12) is the same for both fast and safe steps, so only one
matrix factorization is required per iteration.

The safe-step procedure is defined as follows.

safe(z, A\, y, 1,7, B):
choose & € |7, %], ab € [a,1];
solve (12) to find (Az, AX Ay);
choose o to be the first element in the sequence o, ya®, x2a?, ..,
such that the following conditions are satisfied:
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(16a) Ai(@)yi(a) > yp(a),
(16b) g (z(@), M)l < Bu(a);
(16¢) lrg(2(a), y(a))ll < Bula);
(16d) pla) < [I—ak(l—a)]pu

return (z(«), Ala), y(a)).
A nonzero centering term is used, allowing us to move a nontrivial distance along
the search direction while staying in the set defined by

(17) {1z A 9) [ Aiyi > vt

The second and third acceptance conditions (16b), (16¢) ensure that the infeasibility
remains bounded by a multiple of the complementarity. The infeasibility is “squeezed”
to zero at least as rapidly as the complementarity measure. Similar conditions are
enforced in infeasible-interior-point algorithms for linear complementarity and linear
programming; see, for example, Wright [14]. The fourth condition (16d) is a “sufficient
decrease” condition of the kind often found in algorithms for nonlinear optimization.
Tts purpose is to ensure that the decrease in objective function (in this case, u) achieves
at least a fraction & of the decrease promised by the linearized model (12).
Fast-step calculations are a little more complicated. Since they use no centering
(¢ = 0), it may not be possible to satisfy the acceptance criteria (16) regardless of
how small we choose a. Hence, these criteria must be relaxed but not abandoned.
The amount of relaxation is large enough to allow near-unit steps to be taken near the
solution, but small enough to keep the iterates inside a neighborhood of the central
path. These opposing considerations are balanced by making the amount of relaxation
geometric in the fast step counter ¢.
fast(z, A, y, 1,7, 8):

solve (12) with & = 0 to find (Az, AX, Ay);

set 5/ = Ymin + :Yt+1(7max - Vmin); set 6 = (1 + P;/t-l—l)ﬁ;

define

if a’ <0 return(z, A, y);
choose o to be the first element in the sequence o, ya®, x2a?, ..,
such that the following conditions are satisfied:

(19a) Ai(@)yi(a) = g pla),
(19b) Iy (z(0), M)l < Bp(e);
(19¢) Irg(z(a), y(@)Il < Bula);

return (z(a), A(a), y()).
Note that a sufficient decrease condition is not needed in (19); the acceptance
test pp41 < ppi in the main algorithm performs this check.
Before embarking on the convergence analysis, we note that the following condi-
tions are satisfied by every iterate (2%, A\, y*):

(20&) Afyf Z Yk Mk ZPlen/'Lka = 1a2aaPa
k k
(20b) max([lrells [l7gll) < Brpn-
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Note too that Fx 1s bounded. In fact,

tr [e%e)

(21) finin < i = Bin JLO43) < e [T(14 (5)7) < P x0(3/2) = .

j=1 j=1

3. Convergence. In this section we first prove global convergence and then
discuss superlinear local convergence.

3.1. Global Convergence. We prove here a global convergence result: either
the sequence of iterates terminates finitely at a solution, or all limit points are solutions
of (3). To prove this result, we use a simple technique due to Polak [9, Chapter 1].

We start by formalizing our assumptions on ® and g.

AssumpTIoN 1. @ : RY = RY isC! and monotone; and each component function
gi of g: RY = R is €2 and conver.

it follows immediately from this definition and (6) that

D.f Dg"
—Dyg 0

is positive semidefinite for each (z, A) € RY x RI_:.
Recall that S is the solution set for (3). All iterates of the algorithm are confined
to the set Q, defined by

(22) Q = {209 1Ay 20, [lre(z, M < Pmaxtts
g (2, W] < Bmaxtt, Aithi > Ymingt, ¢ =1,2,..., P}.

We also define
Qip =N (RY xR, xRy

where Ri_l_ 1s the strictly positive orthant in R and p = ATy/P asbefore. If (z,\,y) €
O\Q4 4, we must have A;y; = 0 for some index ¢ and therefore g = 0 from the last
condition in (22). Hence, (z, A, y) is a solution vector, so we can write

QIQ++U8, Q++QS:®

The result that (2%, \* y*) € Q for all k follows from (20) and (21).

By monotonicity, we know that the submatrix D, f in the Jacobian is positive
semidefinite. To ensure that the Newton-like equations (12) have a unique solution,
we impose a slightly stronger condition involving two-sided projections.

The two-sided projection of a square matrix M € R¥*¥ onto the kernel of another
matrix G € RE*YN is any matrix Z7 M Z where the columns of Z form a basis of ker G.
The two-sided projection of M onto ker G is positive definite if and only if d¥ Md > 0
for each d € ker G with d # 0.

ASSUMPTION 2. The two-sided projection of the matriz

D.f(z,)\) = D®(z) + Z XiD%gi(2)

. . . N P
onto ker Dg(z) is positive definite for all z € R™ and A € Ry | .



INTERIOR-POINT METHOD FOR VARIATIONAL INEQUALITIES 9

Note that this assumption is vacuously satisfied when the constraints g(z) < 0
include nonnegativity, z € R}. In particular, it holds for the case g(z) = —z—the
nonlinear complementarity problem.

To verify that Assumptions 1 and 2 imply existence and uniqueness of the solution
to (12), note that Ay and A\ can be eliminated from this system to obtain a reduced
system in Az with coefficient matrix

(23) D.f+ (Dg)"AY ! (Dy).

Suppose that dX[D, f+(Dg)T AY ~1(Dg)]d = 0 for some vector d. We have d¥ D, fd >
0 from Assumption 1 and, from strict positivity of A and y, we also have

d((Dg)"AY T (D)l = D UDgi)dAifwi = 0.

K3

Hence, d¥ (D, f)d = 0 and (Dg)d = 0. By Assumption 2, it follows from these relations
that d = 0, so that the matrix in (23) is positive definite and therefore (12) has a
unique solution, as required.

Assumptions 1 and 2 imply that the algorithm takes a nontrivial step «y, along the
computed search direction—and therefore makes a nontrivial amount of progress—at
every iteration. The first result indicates that this claim is true in the case of safe
steps.

LEMMA 3.1. Suppose that Assumptions 1 and 2 hold. Let (Z, A, y) € O\S. Then
there are scalars § > 0 and & € (0,1] such that if the algorithm takes a safe step from
any point (z, A, y) satisfying

(24) (A y) € B2 (3,A,9) + B,

the calculated step length o will satisfy o > .
Proof. We define § by

;1 . s
0= 2 izl P (mm(/\i, yl)) > 0.

For (z,\,y) € B, we then have

(25) Xivi > (A — 8) (i — ) > 62, p=Ay/P>é.

Note from (20a) that, if the safe step routine is called at the point (z, A, y), then
Al > Y, 1=1,2,..., P,

for the value of v that is passed to the routine safe.

Since A > 0 and y > 0 for all (z,\y) € B, the coefficient matrix in (12) is
nonsingular and continuous in an open set containing B. The right-hand side in (12)
is also continuous with respect to (z, A, y) and &. Hence, there is a constant Cg > 0
such that

(26) [(Az, AX, Ay)|| < Cs

for all (z,A,y) € B,&ela, %]
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Define &(1) = §/(2C5). We then have for all o € [0, @(1)] that

A .
A+ AN > A — 0 — — AN >26—6—=6>0,
+ « > 206| | > 5 >0

and similarly for y; + aAy;.

Now define
~ . ~ 6-(1 - 7max)52
& = min (a(l), T .

We now show that the first acceptance criterion (16a) is satisfied for all o € [0, a()].
From the last block row in (12), we have

Ni(@)yi(e) = Nyi — alyi +adp+ o AN Ay;

> (1 —a) + adu — a*Cg,

since A;y; > . Using (12) again, we also have

/\(a)Ty(a) = My-— a(l — 5’)/\Ty +a?AN Ay
(27) < My—a(l—a)\y+a2CE
By combining these two estimates, we find that (16a) is satisfied if

yu(l = a) + adp — o?C > yu(l — a) + ayéu + o*yC3 /P,

which, in turn, is satisfied if

Fa(l —~)p > 2a°CE.

Since u > 6%, v € (Ymin, Ymax), and & > &, this last condition holds for all « € [0, a(*)],
so the condition (16a) is satisfied for « in this range.
We now prove that the fourth condition (16d) holds for all a € [0, &®)], where

) [ 82
a®) = min (a(z), P(1- Ki)@) .

For o in this range, we have from p > 62, in (25), and & < % that

po| S

a?C2 < aP(l— k)= < a(l —k)(1—-5)\Ty.

Hence, from (27), we have
Ma)ly(a) < ATy —a(l =)  y+a(l —w)(1 = a)M Ty < [1 = ar(l — )]\ Ty,

as required.
We turn next to the second condition (16b). From Taylor’s theorem and (12), we
have
Az
felN@) = e +al D Dar ][ S

! Az
+a/ [Df(z + 0aAz, A+ 0aAX) — Df(z,A)] [ AN ] do
0

A
'
®

N

Il

(1 —a)f(z,A) + aAry,
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where we have defined

! Az
(29) Ary :/0 [Df(z + 0aAz, A+ 0aAX) — Df(z, A)] [ AN ] de.

By taking norms, we obtain

(30)  [IArl < max [IDS(: + 00z A+ 0adN) = DI ) (A2, AV

Therefore, by continuity of Df (Assumption 1) and the bound (26), there is a scalar
a® € (0,a®)] such that

1 ~
(31) ael0,a®] = ||Arf||§§6'ﬁmin52,

for all (z, A, y) € BB from which a safe step is calculated. By reducing ¢, if necessary,
we can also assert that

(32) ael0,a] = aC2<

By taking norms in (28) and using (20b), we find that

1/ (z(e), Ala))] (1= )| f (=, VI + al|Arg]

<
< (1= a)fu+allAr]).

(33)
Meanwhile, we have by a slight change to (27) (bounding below instead of above) that
Ma)ly(a) > ATy(1 — a + ad) — o*CE.

Trivial rearrangement of this expression gives
(1= a)u < pla) — adp+ (aC3/P).
By substituting into (33), we obtain
1f(z(@), Ma))ll < Bu(e) - Bagp+ fa’CF/P + af | Ary|
(34) = Bula) — o [fop— PaCq/P — || Arl].
Since & > ¢ and 8 > fmin, we have from (25), (31), and (32) that

1. 1.
1Al < 5680, BaCS/P < 568,

for all & € [0, a*)]. Hence, the bracketed term in (34) is nonnegative, and we have

77 (z(a), M) = [If (z(e), Ma))|| < Bp(e),

for all o € [0, @*)], as required.
By an almost identical argument, we can show that the third condition (16¢)
holds for a € [0, @®*)], though we may have to choose &) smaller (but still positive).
We have shown that the criteria (16) are satisfied for all o € [0, &®*)]. Hence, the
step length selected by safe will be at least as long as the first value of o below &%)
that is tried by the Armijo backtracking strategy. We deduce that

a>a = min(a, Xéz(4)),
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and our proof is complete. 0O

The global convergence result and its proof are similar to Theorem 3.3 of Wright
and Ralph [18].

THEOREM 3.2. Suppose that Assumptions 1 and 2 hold. Then either

(A) (2%, NF %) € 8 for some k < oo, or

(B) all limit points of {(2*, A\* y*)} belong to S.

Proof. Suppose for contradiction that the sequence {(2*, \* y*)} is infinite, with
a limit point (2,;\,3}) that does not belong to §. Since the sequence is contained
entirely in the closed set €, we must have (z, A g) € Q\S. We must have (;\, g) >0,
since otherwise it would follow from the definition of € that g = ;\TQ/P = 0 and
hence (z, A g) € S. Hence, pi > 0.

Let K be an infinite subsequence such that

{5 N 0 ) e — (2,0,9).

Since {ug} is monotone decreasing, we have pp > i for all k. If a safe step is taken
from the k-th iterate, for some k € K, we have from (16d) and Lemma 3.1 that the
(k + 1)-th iterate must satisfy

aK |
(35) N e O T 2

If a fast step is taken, we have from the acceptance test in the main algorithm that

(1;P)ﬂ’

The estimates (35) and (36) show that, whatever kind of step is taken, the reduction
in p from iterate k is at least a small constant. Therefore, since {ug} is monotone
decreasing and K is infinite, we have pi | —oco. This is a contradiction, since py is
bounded below by zero, so the proof is complete. 0O

(36) i1 < pp = piie — (L= p)pu < pw —

3.2. Superlinear Local Convergence. By making various assumptions about
the functions ® and g and about the solution set § (see the next section), we can
show that the algorithm converges superlinearly. The sequence of duality measures
{pi } converges with Q-order at least 1+ 7, where 7 € (0, 1) is the parameter used to
choose the initial step length for the fast step in (18).

We state our main result here. The remainder of the paper lays the groundwork
for its proof, which is given at the end.

THEOREM 3.3. Suppose that Assumptions 1, 2, 3, 4, 5, 6, and 7 are satisfied
and that the sequence {(z%,\* y*)} is infinite, with a limit point (2, \*,y*) (in the
solution set §). Then the algorithm eventually always takes fast steps, and

(i) the sequence {uy} converges superlinearly to zero with Q-order at least 1+ 7,

and

(11) the sequence {(z%, A\* y*)} converges superlinearly to (z*, \*, y*) with R-order

at least 1+ 7.

We mention that a limit point (z*, A\*, y*), as needed above, exists under the extra
assumption of boundedness of the feasible region C; see Section 6. Thus a corollary of
Theorems 3.2 and 3.3 is that if C is bounded and Assumptions 1-7 hold, then global
and superlinear local convergence are both guaranteed.

We also remark that the monotonicity conditions of Assumption 1 are proba-
bly stronger than necessary for convergence. Regarding global convergence, given
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the work of Wang, Monteiro and Pang [12, Theorem 4], it seems likely that these
monotonicity conditions can be relaxed somewhat. Regarding local convergence, it is
conceivable, given a sequence of iterates {(2*, A\*)} with a limit point (2*,A\*), that
superlinear convergence requires fewer hypotheses, perhaps only the Mangasarian-
Fromovitz CQ in place of Assumption 3, and Assumptions 4-7.

4. Assumptions for Superlinear Convergence. We have already shown in
Section 3.1 that Assumptions 1 and 2 are enough to guarantee global convergence of
the kind described in Theorem 3.2. In the remainder of the paper, we focus on case
(B) of this theorem, in which the iterate sequence has a limit point in the solution
set S. In this section, we state and describe the assumptions that will be used in the
proof of Theorem 3.3.

Assumption 3 is the Slater constraint qualification.

ASSUMPTION 3. There is a vector Z € C such that ¢(z) < 0.

Assumption 4 concerns strict complementarity for at least one member of the
solution set.

ASSUMPTION 4. There is a strictly complementary solution (z*,\*,y*), that is,
(z*, A", y*) satisfies (3) with \* + y* > 0.

The next assumption concerns smoothness of ® and D¢ around the vector z*
defined by Assumption 4.

ASSUMPTION 5. The matriz-valued functions D® and D?g;, i = 1,2,..., P are
Lipschitz continuous in a neighborhood of z*.

For the next assumption, we recall the definition of the index sets B and A from
Section 1. All strictly complementary solutions (z*, A", y*) have Az > 0, X}, = 0,
ys = 0, and y3, > 0. This assumption concerns invertibility of the projection of
D, f(z*,A) onto the null space of the active constraints, which are the components
gi(z) for i € B.

ASSUMPTION 6. Let S; » and B be defined as in Section I, and z* be as defined
in Assumption 4. Let S be the set of A € R such that (z*,X) € S; . Then for each
member X of 8%, the two-sided projection of D, f(z*, ) onto ker(Dgy) is invertible;
that is, for any basis Z of ker(Dygj), the matriz ZT D, f(2*,\)Z is invertible.

This assumption looks similar to Assumption 2, but it applies to a different set
of points (z, A) and also refers to a different subspace—that of the active constraint
Jacobian, not of the entire constraint Jacobian.

LEMMA 4.1. Suppose that Assumptions 1, 2, 3, and 4 are satisfied. Then the set
of multipliers 8% defined in Assumption 6 is polyhedral, conver, and compact, hence
1s equal to the convex hull of its extreme points.

Proof. By definition, 8§ can be written

e Ri S (2 4+ Dg(z*) A =0, g(z*)'A =0},

which is clearly a polyhedral, convex set. Boundedness follows from Gauvin [2] if we
can show that the Mangasarian-Fromovitz constraint qualification holds at 2*. Given
the Slater point (z, A) from Assumption 3, we have for ¢ € B that

6:(2) 2 9:(=") + Dgi() (7 — =) = Dgil=")(z — =),

so that Dg;(2*)(z — 2z*) < 0 for all ¢ € B, as required. O
We return to our earlier claim that the z* solution component is uniquely deter-
mined.
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LEMMA 4.2. If Assumptions 1, 3, 4, and 6 hold, then
S = {7} x S5,

where Sy C Ri 15 the set of multipliers referred to in Assumption 6.

Proof. We first demonstrate local uniqueness of the first solution component z*;
that is, for (z, A) in S, » near (2%, A*), we have z = 2*. Assume for contradiction that
{(z%,A%)} C 8., is a sequence converging to (z*,A*), where \* € S} and ¥ # 2~
for each k. Let 7, = ||z" — z*|] > 0, and assume without loss of generality that
(% — 2*) /7 — d, # 0. Let Z be a basis of ker Dgg(z*), so that for any optimal
multiplier A (i.e. (z,A) € S, » for some z), we have

Z'Dg(z*)'N = Z"Dgp(2*) ' As = 0,

where the first equality uses the fact that Ayr = 0 if A 1s an optimal multiplier.
Hence ZT f(2*, A*) = ZT f(2*, A¥). Using this equality together with 0 = f(z* \*) =
F(z%, A*), we obtain

ZT f(zk’ /\k) — f(z*’/\k)

Tk

(37) 0 = — Z'D,f(z*, \)d,.
Similarly, since 0 = g5(2*) = g5(2*), we have 0 = Dgp(z*) d,, thus d, = Zu for some
vector u. Substituting Zu for d, in (37) gives

0 = (ZTD, f(z*,\*)2)u,

so that u = 0 by invertibility of the two-sided projection. Therefore, we have d, = 0,
a contradiction.

As noted in Section 1, convexity of S; 5 follows from monotonicity of f and [3,
Proposition 3.1]. To shows that z* is the first component of any solution, let (z, A)
be an arbitrary element of S, 5. By convexity, we also have

(I—a)z", A")+ a(z,A) € S5

for all a € [0,1]. Since (1 — a)z* + az = z* as a | 0, it follows from local uniqueness
that z = z*. 0O

Note Lemmas 4.1 and 4.2 together imply that S, » is compact. This fact, together
with Assumption 5 and the observation that D, f(z, A) is linear in A, ensures that
D, f(z,A) and Dg(z) are Lipschitz continuous in a neighborhood of S, ».

Finally, we state the constant rank assumption. See Pang and Ralph [8] for some
discussion on this and related conditions.

ASSUMPTION 7. The constant rank constraint qualification (CRCQ) holds for
the system g(z) < 0 at z*: For some neighborhood U of z*, the set of matrices
{Dgs(2)T |2 € U} has constant column rank.

Clearly the CRCQ holds if ¢ is affine. It also holds if (Dgx)? has full column

rank (that is, if the linear independence constraint qualification holds).

5. Proof of the Superlinear Convergence Result. In this section, we prove
the main result, Theorem 3.3. Most of the effort is spent in estimating the size of
fast steps (Az, AX, Ay) that are calculated from points (z, A, y) € Q close to the limit
point (z, A y). The ultimate result, Corollary 5.13, shows that the estimate

(38) (A2, AN Ay)[| < Cop
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holds for all steps of this type. In Subsection 5.6, this estimate is used together with
Lipschitz continuity to complete the proof of Theorem 3.3.

The task of proving the estimate (38) turns out to be highly technical, so we have
organized our argument into subsections and provided considerable motivating dis-
cussion. Readers should be able to follow the outline of our argument without delving
into the details. The difficulty 1s due entirely to our wish to use weaker conditions
than the usual nondegeneracy conditions. When the latter hold, the condition (38)
follows from a simple application of the implicit function theorem.

Most results in this section follow from the same set of assumptions, which we
define here to avoid repetition:

Standing Assumptions: These are the assumptions of Theorem 3.3;
namely, Assumptions 1, 2, 3, 4, 5, 6, and 7, together with an as-
sumption that the sequence has a limit point but does not terminate
finitely.
Assumption 7 is needed only from Subsection 5.4 onwards, but we include 1t among
the standing assumptions for simplicity.

In Subsection 5.1, we define a partition of the vector (Az, AX, Ay) into two com-
ponents (¢, u,v) and (¢, u’, v"). Subsection 5.2 gives a relatively easy part of the proof:
showing that the components Ay and Ayg are O(py). Subsections 5.3 and 5.4 show
that (¢/,u,v") and (up,var), respectively, are also O(p). All these results, taken to-
gether, establish ||[(AX, Ay)|| = O(u). We summarize this result in Subsection 5.5 and
deduce that the remaining step component ||Az|| is also O(y).

Throughout the section, we assume that the sequence (2, A\* y*) has a limit point
that we denote by (Z, A g). Of course, we know from Theorem 3.2 that (z, A, y) €S.
When Assumption 4 and the result of Lemma 4.2 hold, all solutions have the vector
2* as their z component. In this case we have z = z*, so we sometimes write the limit
point as (z*,;\, y*), where y* = —g(z™).

Another quantity that appears repeatedly in the remaining analysis of this section
is the restricted neighborhood §(§) of the limit point, defined by

(39) S©) £ 1{(z M9 € Q= A y) — (=% Ay < ).

5.1. Computation of Fast Steps. Recall that each fast step is obtained by
solving (12) with & = 0; that is,

sz (Dg)T 0 AZ 7”f
(40) —Dyg 0 -1 AN | = g
0 Y A Ay —AYe

For convenience, we restate the following notational definitions from Section 2:
ry = —f(z,A), rg =y + 9(%), p=Ay/P.

We are particularly interested in the fast step calculation when the current it-
erate (z,A,y) is close to the limit point (z*, A, y™). To establish bounds on the step
(Az, AX, Ay) in this situation, we split it into two pieces. The splitting is defined
implicitly in terms of the following minimization problem:

(41)
(=%, 7)

€ arg min
(z*,m)€S: 5

[ J(5m) = [F(2,2) + Do (2, (=" = 2) + Dyg(2)T (m = A)] ] H
9(z") = l9(2) + Dg(2)(z" = 2)] '
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*

Existence of the vector (2, 7) follows from compactness of S, x. We use (2*,7) to

define the vectors 7y, 04, €7, €4 as follows:

(42a) ne = D.f(z,\)(z* = 2) + Dg(2)" (7 — ),
(42b) ng = y—Dg(2)(z" —2) +9(7)
(42¢) e = —flz,A)) =D, f(z,\)(z" — 2) — Dg(2)T (7 = N),
(124) G = 92) - g(=") + Dgl) (=" — 2).
The right-hand side of (40) can now be partitioned as

rs Ny €r

Tg = Mg t | & |

—AYe —YAe 0

and the splitting (Az, AX Ay) = (t,u,v) + (', ', v') of the right-hand side follows

accordingly:

D.f (Dg)" 0 t 0y
0 Y A v —AYe
D.f (Dg)f 0 A €f
(44) —Dyg 0 —1 u | = g
0 Y A v 0

Because of Assumption 2, the systems (40), (43), and (44) all have unique solutions.

5.2. Bounds for Ay and Ayg. It is relatively easy to obtain size estimates
for about AAy and Ayg, which together make up half the components of (AX, Ay).
We start by deriving some upper and lower bounds on the components of A and y for
(z,A,y) in a neighborhood of the form (39), which will prove useful throughout the
remainder of this section.

LEMMA 5.1. Suppose that the standing assumptions hold. Then there s a con-
stant Cy such that the following bounds hold for all (z, A\, y) € S(1):

(45a) Ai < Cap (i€EN), yi < Cap (i €B),
(45b) Ai 2 Ymin/Ca (Z € B)a Yi > Ymin/Ca (Z € N)’
(45C) Yi Z PYmin/J/Cél (Z € B)a /\z Z PYmin/J/Cél (Z € N)

Proof. Let (z*,A*, y*) denote the strictly complementary solution from Assump-
tion 4. By monotonicity of the mapping (5), (10), and the fact that g(z*) = —y*, we

Lo Tt

By rearranging this expression, we have from (A*)Ty* = 0, (20b), and (21) that

ATy + ()" A

z— 2%

A=A

—r
y—rg—y*

P2 A) = F(=7,07) ]T [

0|7 () +90)

<

< ATy llrgllllz = {1+ (gl = A7)
<

P Bmap (1214 12711+ AT+ AT -
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Since (z, A, y) € S(1), we have
(46) 1z M <G MG =2 A=< I AT+
so we can bound the term in parentheses by a constant, giving
W)y + (y") A < Cap,
for some positive constant Cy. Since Xy = 0 and yj; = 0, this inequality implies that
S Nvi+ D uihi < Cap
ieB iEN

Since (A%, ¥x) > 0 and (A,y) > 0, each term in the summations is positive, so we
have

1 - 1
—Cap, 1€N; ¥i < <7
Y; A}

K3

A £ Cup, i€B.
From these bounds, we can define Cy is an obvious way to satisfy (45a).
For any ¢ € B, we have from (22) and (45a) that

/\i Z Ymin H# > Ymin H# _ Ymin

vi — Cap Cy’
giving the first part of (45b). The second part is proved similarly.
For i € B, we have from (22) and our choice of (z, A,y) € S(1) that

yi Z Ymin H Z :Yminﬂ .
A similar lower bound can be proved for A;, i € A'. Hence (45¢c) holds, for a suitable
redefinition of Cy. 0O
LEMMA 5.2. Suppose that the standing assumptions are satisfied. Then there are

constants §1 € (0,1] and Cg > 0 such that for all (z, A, y) € Q(d1), the solution of the
linear system

D.f (Dg)T 0 Az ry
(47) —Dyg 0 —I AN | = | 71y
0 Y A Ay 0

satisfies
15| < Co (et 1801 -

Proof. Because d; < 1, the estimates (45) apply for points (z, A, y) € S(41). Note
too that these points also satisfy y = O(d1), since

Pu=A"y=Agys + Agyn < (sl + 1)1 + d1([lun[| + 1) = O(61).

By eliminating A\y and A//\\N from the system (47), we obtain

(D2 f) 4+ (Dga )" An(Yn) ™' Dgn (DgB)T] éAi
—Dys (As)™Ys | | AXs

_ ri— (Dgn) " An(Ya) ™ (rg)w
(48) (ry)s ] |
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From Lemma 5.1, we have ||[Ax(Ya)~ || ( ) and ||A;1YB|| = O(u). Because of
Lipschitz continuity (Assumption 5) and (z, A, y) € S(d1), we have
Dg(z) — Dg(z") = O(llz = 2"|]) = O(é1)
D.f(z,A) = D-f(z",A) = O(llz=2"[l) + O(]A = All) = O(41).

By perturbing the coefficient matrix in (48) and substituting these estimates, along
with g = O(81), we obtain

| Dl Postet ] A
—Dygp(z*) 0 Ags
(49) _ [ ry— (DHN)T(;\;;;EYN)—l(Tg)N ] L0 Aé}zB ] .

By partitioning Az into its components in ker Dgp(2*) and ran Dgs(2*)?, we have

from Assumption 6 that Az is bounded in norm by the right-hand side of (49). Hence,
since ||7¢|| and ||r4|| are both O(u), and Dgyr is bounded on bounded sets, we can
write

IS5 < Co (4 + 01 (1831 + 1A%a1)
for some constant Cy. By choosing é; small enough that
- 1
o < 3
we can combine terms in ||£\z|| on the left-hand side and divide to obtain
1A% < 2Cs (4 + 61| ANs[1) < 2Copn+ |ANs],

proving the result. 0O
In subsequent results, we often will refer to the positive definite diagonal matrix

DF* defined by
(50) D= A"Y2yl2,

We can obtain bounds on [|D|| and ||[D~}|| for points (z,),y) € S(1) by applying
Lemma 5.1. For ||[D~}||, we have
AT (A + 1)1/

51 DM = i < Cop—/2
OU IPTI= e, S G, Dca =

for some constant C7. Similar logic shows that
(52) IDI| < Crp™ 12,

after a possible redefinition of C7.

The next result is a bound on the scaled vectors DAX and D™ TAy.

LEMMA 5.3. Suppose that the standing assumptions hold. Then for the con-
stant &1 defined in Lemma 5.2, there is a constant C's > 0 such that the solution
(Az, AN, Ay) of (40) satisfies

(53) IDAN]| < Cap’?, |ID7'Ay|| < Cap'/?
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for all (z, A\, y) € 8(d1).
Proof. We break the solution into two pieces and prove that the required bounds
hold for each part. We write

(Az, AN, Ay) = (Bz, AN, Ay) + (Az, AN, Ay),
where

[ D.f Dg" 0 [ Az] [0
(h4a) —Dg 0 —I AN | = 0 ,

0 Y A || Ay ] | —YAe

[ D.f DgT 10 A\z 1 [ s
(54b) —-Dg 0 —I AN | = | n

0 Y oA ]| Ay 0

For the first component, we multiply the last block row by the diagonal matrix
(YA)=? to obtain

(55) DAX+ D™'Ay = —(YA)'/?%.
From (b4a), we also have
AN Ry=-AX (Dg)Az = Az (D.f)Az >0,
so by taking inner products in (55), we obtain
|DEXJ+D~ Byl < |DEX+ B2 (D. 5z + D 3g° = [V A) 2l = Py
Hence, we have
(56) IDEN| < P22, (DU Rg) < P

For the second component of the solution, we obtain from the last block row in

(54b) that

(57) DAX=-D7'Ay = |[[DAX]| =D Ay,

and so we seek a bound for ||D£\|| Using (54b) again, we obtain
—Dg&z - A\y =ry = —Dg&z + DA) = Tg.

By taking inner products with &j\, we obtain

—

o~ —.T —T
IDAN|? = AN ry+ AN (Dg)Az.

From the first block row in (54b), we have by positive semidefiniteness of D, f(z, A)
that

T — S —
AX (Dg)Az = (ry — (D, AT Az < T?Az.
By combining the last two expressions, we obtain

—~ —T o~ o~ —
(58) IDAX* < AN vy +rf Az < [|AM[Jrgl| + [l Il Az])-
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Because of (20b) and Lemma 5.2, we have

7l < Brmaxtt,  Irgll < Brmaxpts (| A2[] < Co(pe + [|AN])).
It follows from (51) that
IAN] < [|D™HI[IDAN] < Crp~ 2| DAN].

By substituting all these estimates into the right-hand side of (58), we find that there
1s a constant C1q such that

IDAX? < Cro (M2 DAN]|+ %)
It follows immediately from this expression and (57) that
IDAM| < G, [|D7' Ay < Cap'/?,
for some constant Cs. The result of the lemma is obtained by combining this estimate
with (56). O
Bounds on half the components of (AX, Ay) follow easily.
THEOREM 5.4. Suppose that the standing assumptions hold. Then for the con-

stant &1 defined in Lemma 5.2, there is a positive constant Cs such that the solution

(Az, AN, Ay) of (40) satisfies
(59) IAANI < Csp, (| Aysl] < Csp,

for all (z, A\, y) € 8(d1).
Proof. From the definition (50) and the bounds (53), we have that

i\ 2
zZ AN
‘(/\z)

Hence from (4ba) and (45b), we have for i € A that

< [[DAN]| < Cap/2,

Ai 1/2 C 1/2
|AN] < (-) Capt/? < 452 Capt’?,

Yi .
which proves that [|AAy|| < Cspy for an obvious definition of C5. The bound on
[|Ayg|| is derived in the same way. O

5.3. A Bound for (¢, u,v'). In this subsection we find bounds for the com-
ponents (t',u',v') defined by (44). The difficult part of the analysis appears in the
following two lemmas, in which we estimate the size of (ef, ¢,) in (42c),(42d).

Under our standing assumptions, we can define the following set:

(60) S\ = {(#,A) €S x| Ai 2 Ymin/Ca, i €B; 9i(2) < —Ymin/Ca, 1 € N},

where C is defined in Lemma 5.1. Because of (45b), all limit points of the sequence
{(z%, M)} lie in 8%°; in particular, (z*, ;\) € 8°,. Obviously, (z, A, —g(2)) is a strictly
complementary solution of (3) whenever (z, /\)76 8.

Our first result, like the results in the preceding subsections, considers points
(z,A,y) € Q near the solution set S and shows that dists, , (2, A) can be bounded in
terms of the amount by which (z, A\, —g(z)) violates feasibility and complementarity.
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LEMMA 5.5. Suppose that the standing assumptions hold. Then there exist con-
stants L and 02 € (0,01] such that the following bound holds for all points (z,A) €
RY x RY with dists= (z,A) < d,:

(61) dists, ,(2,A) < LI (f(2,2), 9(2)+, A g(2)) Il

Proof. By Lemmas 4.1 and 4.2, we know that S, » is compact. Since §7°, C 8.
and 8§ is closed, 87° too is compact. 7

We prove the result by contradiction. If the claim is false, we can choose a
sequence {(&¥ &§)} C RY x Ri with the properties

(62) distes, (€4,€4) 10,
and
(63) EE,€5) = G A = kI(FER€5), 9(€8) 5, (E5) g (N,

where (z*,A*) is the nearest point in S, to & for each k. (Note that (z*,\¥)
exists, by compactness of S, 5, and that the z* component is uniquely defined.) By
compactness of 8% and (62), we can take subsequences if necessary and assume

that both {(£%, &)} and {(2*,A¥)} converge to (z*,)) € 8% By defining 7, =
I(€F,€5) — (2*, AF)|| and taking a further subsequence, we can assume that there is a

vector (d.,dy) € (RY x RI_:) \ {0} such that

(f’gi)_(z*’;\k) -

Tk

(ds, dy).

(In fact, (d.,d)) is a unit vector.) Since A5, = 0 and A§; > 0 for all k sufficiently
large, the solution (z*, ;\k) is strictly complementary for all k sufficiently large.

The following analysis is devoted to showing that (d,,ds) = 0, a contradiction
that proves the result. First, we show that (d,,d)) is in the normal cone to S, » at

(z*, A), namely,

T
d, Z*—z* .
(64) ( d ) ( I ) <0 forall (2*,4)€S;x.

Second, we show that (d.,d,) is in the tangent cone to S, » at (z*, ), indeed that

(65) (z",A)+ 7(ds,dx) € S; » for small 7 > 0.

Together, these two results imply that ||(d., d))|| = 0, as required.
To show (64), we note that, since (2%, A¥) is the projection of (¢¥,£%) onto S, »,

we have
k= T * %
( gz ;f\k ) ( Z/\ /\”zk ) <0, for all (z*,A) € S, .
k_ _

We obtain (64) by dividing this expression by 7, and taking limits.
The proof of (65) is longer. By the smoothness properties of f, and the fact that
f(z*,AF) = 0, we have
E ¢k koghy _ f(,* 2\F -
(66) f(zag)\):f(zag)\) f(Z 3 )%sz(z*,/\)dz—i—Dg(z*)Td)\

Tk Tk
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Taking ¢ € B, we have ¢;(z*) = 0 and so

Tk Tk

¢k (kY g (2%
+
For the nonbasic components, we have
(68) 9i(2") <0 = gi(€5; =0, forallie N,

and all k sufficiently large. Also, we have

soy CDTE) | E)T0E) ~ O Ly

Tk Tk

By combining (66), (67), (68), and (69) and the property (63), we obtain
o U)o (€T

k Tk
= |(D:f(z", N)d: + Dg(")" dx, [Dgs(")d:]4, g(=") T dx + AT Dg(=")d. ).

It follows immediately that

(70a) D.f(=",Nd. + Dg(z*)"d, = 0,
(70b) Dgp(z")d, < 0,
(70c) gz dy + X' Dg(:*)d, =

Since gi(2*) = 0 and Ay = 0, we can rewrite (70c) as

(71) > gi(z")(dr)i + > MiDgi(z%)d. = 0.

iEN i€B

Since (M) = 0 and €% > 0 for all k, we have (dy)x > 0. Therefore all product terms
in both summations in (71) are nonpositive, so we can use ga(z*) < 0 and Ag > 0 to
deduce that

(72) (dx)w =0, Dggp(z*)d, = 0.
By multiplying (70a) by d? and using (72), we obtain
(73) dLDf, (2%, Nd, = —=dL Dg(*)"d) = 0.

Assumption 6, together with d, € ker Dgg(z*) (from (72)) and (73), implies that
d; = 0. Hence, (70a) reduces to

(74) Dg(z*)Tdy = 0.

Finally, we are in a position to verify that (65) is satisfied. Because of d, = 0 and
(dx)a = 0, we have

A
o o o o

gs(z* +7d,) = g5(z")
gn (7" 4+ 7ds) = gn(27)
Anv +7(dx)

s + r(dy)s > for 7 > 0 sufficiently small.
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From (74) and the fact that f is linear in A, we have
F +rd AN+ 7dy) = (25 A+ 7dy) = f(z5,0) + 7Dg(z*) dy = 0.

Together, these formulae indicate that (65) holds, so we are done. [

LEMMA 5.6. Suppose that our standing assumptions are satisfied. Then there
exist constants L > 0, L > 0, and 03 € (0,d2] (where §y is defined in Lemma 5.5)
such that for each (z, A\, y) € 8(53) we have

o[BI s e )|

2= 9(") + Dy(2)( < L,
and
(76) || 2@ Y ]| < e

where, as in (41), T is chosen from the optimal KKT multiplier set 8 to minimize
the left-hand side of (75).

Proof. We start by proving (75). As in (41), we denote the minimand of the
left-hand side in (75) by (2*, @), whose existence follows from compactness of S, ».
We show first that ||(z*, ) — (2, A)|| = O(p) and then prove the result by a Lipschitz
continuity argument.

By considering (z, A, y) € S(d2), we have from (10), (22), and the fact that y > 0
that || f(z, A)]] < Bmaxpt and

(77) g (=)l = Mllrg — vl 1l < ll7gll < Prmaxpe-

Since for all (z, A, y) € S§(d2), we have ||(z, A)|| < C, for some constant C1, it follows
that

(A y) €802) = [Ng(x)| = N (ry = 9)| < IAlllIrgll + ATyl < (C1Bmax + Phat
We have shown that the right-hand side in (61) is O(u) and therefore, by the result
of Lemma 5.5, we have

(78) 1(2,2) = (", m)|| < Cipe

for some constant Cy and all (z, A, y) € S(d2).

By the Lipschitz continuity assumption (see Assumption 5 and the comments
that follow) we can choose dz € (0,d2] such that D, f(z,A) and Dg(z) are Lipschitz
continuous for dist‘g:?A (z,A) < d3. Therefore, the matrix function

D.f(z,A) Dg(2)" ]
Dg(z) 0

is also Lipschitz continuous as a function of (z, A) in this neighborhood. Since (2*,7) €
S x, we have f(z*,7) = 0 and we have that

F, A+ Do f(2, \) (" = 2) + Dg(2)T (7 — A) ]H S :
79 H <7 A= )P
(79) H[ 9(2) —g(2%) + Dg(2)(z" — 2) < LG ) = (2]
for some constant L > 0 and all (2, A) with distse (z,A) < d3. We obtain the result
(75) by combining (78) with (79) and defining L= LCE.
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For (76), we have that

[ =D, f(z,M)(z* — 2) = Dg(2)" (7 = X) ]
y— Dg(2)(z" — z) + g(2")
_ [rf ] _ [ F(z0) 4+ D f(2,\) (" = 2) + Dg(2)" (7 = ) ]
Ty 9(z) —9(z*) + Dg(2) (2" — z) ’

and therefore

| ebiie’emiche dvrimiell B | Bl | B2

where the last term is a consequence of (75). Since ||(rf,74)|| = O(n) by (22), we
have the result. 0O

We use Lemma 5.6 to estimate the quantities 5y, 7y, €7, and ¢, defined by (42).
For (z, A, y) € 8(d3), we have from (41), (42¢c), (42d), and (75) that

(80) legll < Ly, legll < L.
Similarly, we have from (41), (42a), (42b), and (76) that

(81) Ingll < L, lingll < L.

LEMMA 5.7. Suppose that the standing assumptions hold and 83 is given by
Lemma 5.6. Then there is a constant C1 such that the solution (t',u,v") of (44)
satisfies ||(t',w', v")|| < Crip for all (z, A, y) € S(93).

Proof. Note that (', 4/, ') satisfies the equations (47) if we replace (r¢,74,0) on
the right-hand side by (ef, €4,0). The main difference between the two systems is the
size of the right-hand sides: O(p) in (47), O(u?) here from (80). By using the same

technique of proof as in Lemma 5.2, we can show that
(82) 11 < Cop® + [|ul)),

for some constant Cy. This estimate, together with the techniques of the second part
of the proof of Lemma 5.3, implies that

(83) IDW'|| < C3®?, ||D™|| < Cgpe®l?

where D is defined as in (50). The estimates ||D|| < Cop=/? and [|D~1|| < Cop=1/?
obtained from (51) and (52) can now be combined with (82) and (83) to complete the
proof. 0O

5.4. Bounds for uz and vy. In this subsection we address the most difficult
part of the proof: showing that the components ug and vy from (43) are O(py). As
in the case of affine f, the key to our result is to show that (ug, vy) is the solution of a
certain quadratic program (Theorem 5.12 below). Unlike the affine case, however, the
coefficient matrix in this quadratic program does not remain constant. Instead, this
matrix satisfies a constant column rank condition (Theorem 5.11), and this condition
is enough to yield the desired bound (Lemmas 5.8 and 5.9).

We start by proving a novel variant of a lemma from Monteiro and Wright [6,
Lemma 2.2]. The definition of constant column rank appears at the end of Section 1.

LEMMA 5.8. IfH is a bounded set in RP*? with constant column rank and || - || is
any norm on R, there exists a nonnegative constant L = L(H) with the property that
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for each H € # and h € ran H, there is a solution w € R? of the equation Hw = h
for which

[lw]] < L{[A]]

Proof. The case of h = 0 is trivial, so we assume throughout the proof that h # 0.
To obtain a contradiction, assume there exist {H*} C # and {h*} C R?\ {0}
such that, for each &, A* € ran H* and

(84) distgrry-15% (0) > K||2"]]

where (H*)7'h* = {w : H*w = h*}. We may assume without loss of generality (by
taking subsequences and dividing by ||h*|| if necessary) that H* — H € RP*? and
h* — h € R?\ {0}.

Let J be a maximal set of column indices of H such that H.; has linearly in-
dependent columns. By the assumption of constant column rank, we find that for
large enough k, J is also a maximal set of column indices of H* for which H.’} has
linearly independent columns. Since A* € ran H” it follows that, for large k, there is
a (unique) solution wf}, of the system

Ho = .

Now choose a subset Z of the rows of H such that the submatrix Hz 7 is invertible,
and let

-1
wg = Hl'jhl'~

It follows that wf} - wyg.

For each k we augment wf} to form w* € (H*)~1h* by setting wf =0forj&J.
Similarly, we can augment wg above by setting w; = 0 for j € J, to form w € H~'h.
Of course w* — w, and since h* — h # 0, we have

[l Jlwll

— 1 < oo,
P51 A

contradicting (84). O
On one hand, Lemma 5.8 extends Hoffman’s lemma [4] by allowing H to vary
within a set H rather than remain constant. On the other hand, Hoffman’s lemma is
more general in that it applies to linear systems of inequalities as well as equalities.
In the following result, we partition the matrix H € # C RP*? as

dA=[a ],

where H € RP*7 and H € RP*9, with § + ¢ = q. We use @ and w to denote vectors
in R? and R?, respectively. Below, as usual, [| - ]] is the 2-norm.

LEMMA 5.9. Let H be a bounded subset of RP*? with constant column rank.
Then there exists a nonnegative constant L = L(H) with the property that for any
g x q diagonal matriz S > 0, matriz H = [ H H ] € H and vector h € ran H, the
(unique) w component of the solution of the following problem

1 - .
(85) min SlIS@ll®,  subject to Hi + Hi = h

(@,
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satisfies

[@]loc < Ll[Aloo-

Proof. We adapt the proof of Monteiro and Wright [6, Lemma 7].
Assume for a contradiction that there exist sequences of positive diagonal matrices
{S*}, matrices {H*} C H, and vectors {h*} such that h* € ran H* for each k, and

k

197 [|eo

li =
koo ¥l
where (@, w") is a solution of (85), with S = S¥, H = H* and h = h*. (Observe
that (85) can be viewed as a strongly convex quadratic program in w alone by writing
its feasible region as the affine set {w : Hw + Hw = h for some w}, so the solutions

(", w*) are each unique in their w* components.) By taking a subsequence if nec-
essary, we can define a constant L; > 0 and a nonempty index set J C {1,2,...,¢}
such that
ok
86 M < L VigJd;
( a) ||hk|| = 1, J ¢ )
(o]
|l .

Consider the following linear system

H*G + Hfw = R*,

(87) i = ok, VigJd,

and note that (@*,w*) is a solution of this system. .
Consider the coefficient matrix in (87), which is [ H H ] followed by the row

vectors [ 0 ()T ], j & J, where e/ is the vector in R? composed of Os except for
a 1 1n its jth entry. The rank of this matrix 1s the sum of the cardinality of the
set {1,2,...,¢} \ J and the rank of [ H Hj ] Hence, the family of coefficient
matrices of (87) has constant column rank. By Lemma 5.8, the system (87) has a
solution (#*,2*) such that

~k ~k -~k k ~k
2|0 < 12", 2%)||oo < L h||oo + max |w?| ¢,
12" [lee < I Moo < 2{|| [ jwl ]I}

where Lq is a constant depending only on H and J. Therefore from (86a), we have
#5lle < Lsllh*|cs,

where Lz = La(1 4+ L1). From (86b) there exists K > 0 such that for all & > K we
have

|12}f| > L3||hk||00’ Vied,
and therefore

5| > ||, Vi E T, ¥E > K.
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From this relation and the fact that w* satisfies the second equation of (87), we obtain

[ R Z Sf] ? Z Sfyil;

jeg itT
Bk B k)
< QS+ 3 (Shul)
jers JeT
(88) = ||S% "), for all k > K.

This relation, together with the fact that &% satisfies the first equation of (87), con-
tradicts the assertion that w" is an optimal solution of (85) with S = S* H = H*,
and h = h*. O

In Theorem 5.11 below, we identify the matrix set H in Lemmas 5.8 and 5.9 with
the set

(89) {[D_lf;(gz(S) DgBO(z)T _?N ;dists;;(z,A)ge},

for some ¢ > 0. To apply this result, we need to show that this set has constant
column rank, as we do in the next technical lemma and Theorem 5.11.

LEMMA 5.10. Let @ # J C B and § # K C N. Let I denote the identity in
REXF | If the two-sided projection of D, f(z,A) onto ker(Dygg) is positive definite,
then fort € R® and 77 € RIVI we have

(90) (t,m7) € ker [ ?lz)j;j(’;)) ngézk)T ]

if and only ift = 0 and 77 € ker(Dgz)?. In addition, we have

. sz (ng)T 0 1 T
(91) dim ker [ Dy 0 I dimker(Dgs)".
Proof. The reverse implication in the first statement is obvious. To prove the
forward implication, assume first that (90) holds. We then have

(92) (D, f)t € ran (Dg7)! C ran (Dgs)?.

Let Z be a basis of ker(Dgg), so that ZTran (Dgs)? = 0. Because Dggt = 0, we
have t = Zt for some t. From (92), we have Z7 (D, f)t = 0, and so ZT (D, f)Zt = 0.
Because of our nonsingularity assumption on the projection of D, f(z,A), we have
t = 0 and therefore ¢ = 0. Hence, by substituting in (92), we obtain 77 € ker(Dgs)7,
so the proof of the first part is complete.

We now prove (91). Let the vector (¢, 77, sx) have the property that

T
(t,m7,51c) € ker D-f (Dyg) 0

—Dyg 0 —Ilx
By partitioning appropriately, we have
(93a) (D)t + (Dgg)'ms =
(93b) —DgBt = 0,

(93C) —(DgN)t — INKSK =
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Now we can apply the first part of the theorem to (93a) and (93b) to find that the
system (93) can be written equivalently as

t = 0,
(Dgs)'rs = 0,
_INKSK = 0.

Since K C N, the last of these equations implies that sx = 0. Therefore the solutions
of (93) are the vectors of the form (¢, 77,sx) = (0,77,0), for all 77 € ker(Dgs)7,
and the proof is complete. O
Under certain assumptions (including Assumption 7), it follows from (91) that
the set (89) has constant column rank for some ¢ > 0. We state the result formally.
THEOREM b.11. Suppose that the standing assumptions are satisfied. Then there
is a constant € > 0 such that the bounded set (89) has constant column rank.
Proof. Because of Assumption 6 and continuity of D, f(z,A) and Dg(z) with
respect to z, we can choose ¢ > 0 so that
- D.f(#,A) and Dg(z) are bounded on the bounded set S,  + ¢B, and
- the two-sided projection of D, f(z, A) onto ker Dgp(z) is invertible.
Hence, Lemma 5.10 applies.
Suppose for contradiction that (89) does not have constant column rank for any
¢ > 0. Then there is a sequence {(z*, \*)} converging to some (2*,A\*°) € > (hence,
D, f(z%, A%} — D, f(z*,X*°)), and some index sets J C B, K C A such that

, D f(z%,X¥) Dggz(z")" 0
dim ker [ CDg(+h) .70 1L
(94) # dimker[D’zf_(gg’:\w) (Dgoi%)T _?K].

Note that there cannot be an infinite subsequence for which the left-hand side of
this relation ezceeds the right-hand side, since for any sequence of matrices {A*}
converging to A with corresponding sequences {a*} with 0 # a* € ker A® the limit
points of {a*/||a*||} belong to ker A. Therefore we can replace the “£” by “<” in
(94) without loss of generality. Because of (91), we therefore have that

dim ker(Dgf})T < dim ker(Dg})T

for all k. This inequality contradicts Assumption 7, so no such sequence exists, and
the proof is complete. 0O

Finally, we state the quadratic program for which (¢, ug, vy) is a solution, and
we use the results above to estimate the size of these components. See (42) and (43)
for the definitions of n;, n, and ¢, u, v respectively.

THEOREM 5.12. Suppose that the standing assumptions hold, and let (z, A\, y) €
8(64), where 64 = min(ds, €), and 83 and € are defined in Lemma 5.6 and Theorem
5.11, respectively. Then the solution (t,u,v) of (43) is also the solution of the following
convex quadratic program:

_min s1Dssusll? + 3l1(Dyw) onll?,
(£, aB,Un)

(95) subject to

D.f(z,A) Dgs()" 0 ] e | = [ s — Dyw(2) un
—Dy(z) 0 —(ILy) e ng + L5vs
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Moreover, there is a constant C'yo such that

(96) [|(us, var)ll < Crall(ng, g, unrs )|

Proof. Note first that the matrices D, D=1 (see (50)) are well defined because of
the restriction (z, A, y) € S(d4).

It is immediate from (43) that (¢, us, var) is feasible for (95). To prove optimality,
we need to show that the remaining KKT conditions hold; that is,

0 (sz)T _DgT
D% zus € ran Dys 0
DyAvvn 0 —Iy.

By using arguments similar to those of Ye and Anstreicher [20, Section 3], we can
show that

(sz)T _DgT _sz _DgT
ran Dgg 0 = ran Dgg 0
0 — Iy 0 — Iy

Hence, it suffices to show that

0 —D,f —Dg" N
(97) Disus |=| Dgs 0 [ il ] ,
Dy 0 -1 Afu—n
NN UN N

where 7 is defined in (41). To verify this claim, note first that by (42a) and (43), we
have

D f(z N+ Dy(=) = g = D f(z ) — =)+ D(=)" (7~ ),
and therefore
0=—D.f(z,\)(z +t—2") = Dg()T A+ u—7).
For the second part of (97), we have from (42b) and (43) that

—(Dgs)t = vs + (ng)8 = v +ys — (Dgs)(z* — 2),
D*u=A"1(Yu) = A=} (=AY e — Av) = —y — v,

and therefore
D%BUB =(Dygs)(z+t—2z").
Finally, we use (43) together with 7a = 0 to write
DX[ZAfUN = YA_f}vANNvN =-Av—uy=—Iy.A+u—m).
We now prove (96). For (z,A,y) € S(d4), we have
distsx, (2,4) <[|(2,4) = (", M) <& < e

It therefore follows from Theorem 5.11 that the coefficient matrix in (95) lies in the
set (89), which has constant column rank. Our claim is proved by applying Lemma
5.9 to the quadratic program (95). O



INTERIOR-POINT METHOD FOR VARIATIONAL INEQUALITIES 30

5.5. The Fast Step Estimate. We are now in a position to tie together the
results of Subsections 5.2, 5.3, and 5.4 and therefore obtain an estimate for the length
of the fast step.

COROLLARY 5.13. Suppose that the standing assumptions hold. Then for the
positive constant d4 defined in Theorem 5.12 and all (z, M\, y) € Q(d4), the fast step
(Az, AN, Ay) caleulated by setting & = 0 in (12) satisfies

for some constant Cy.

Proof. From Theorem 5.4, we have [|[(AAx, Ayg)|| = O(p) whenever (z, A, y) €
8(64) C S(d1). We seek similar bounds on the remaining components, which are
(AXg, Ayy) and Az.

From Lemma 5.7, we have for (z, A, y) € Q(d3) that ||(#/, ', v")]] < Ci1u. There-
fore,

(e, vs) Il < (A, Ays)[] + (1w, vis)ll = O(n).

Since n; and 7y are bounded by Lyt over the set Q(d3) (Lemma 5.6 and (81)), the right-
hand side of (96) is O(p). Hence, the second part of Theorem 5.12 yields ||(ug, va)|| =
O(p). Hence,

(99) (AN, Ayy)

| < [l(us, var)ll + [I(us, Vi)l = On).

Finally, we show that the desired estimate holds for Az as well. The proof is
almost the same as the proof of Lemma 5.2, so we skip the details. Starting with (12),
we perform block elimination to obtain a system with the same coefficient matrix as
in (48), but a different right-hand side; namely,

[ ri — (Dgn) T An Yt ((rg)w — uw) ]

(100) (ro)s = us 3 ]
_ [ Ty — (DgNz:g/;;vYN (rg)n ] N [ (Dgﬁf;B A ] .

The first vector on the right is exactly the right hand side of (48), hence its norm
is O(yu) as shown in the proof of Lemma 5.2. The second vector on the right of the
above equation is also O(p) from Lemma 5.1. Thus the vector on the left hand side

of (100) is O(u) for (2, A,y) € S(d4). Hence, as in (49), we have that

o* 3 «\T P . . P
R L eVl BT R e R e Vi el

(101)

Az
ot +ow+s | |-
By using the same argument as in Lemma 5.2, we have that [|Az|| = O(u)+O(]|AAXz])).

(A careful analysis shows that it is not even necessary to decrease d4 to obtain this
estimate.) Because ||AAg|| = O(p) by (99), we have ||Az|| = O(p), as required. O

5.6. Proof of Theorem 3.3. At long last, we are in a position to prove Theorem
3.3. We look at a subsequence that approaches the limit point (z*, ;\, y™), and we show
that once this subsequence enters a sufficiently small neighborhood of this point, with
a sufficiently large iteration count, the following things happen:
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e When the fast step is tried, the initial choice (18) for a satisfies the conditions
(19), and the new iterate satisfies ppy1 < pug and is accepted by the main
algorithm.

e The new iterate and all subsequent iterates cannot escape a (slightly larger)
neighborhood of (z*, ;\, y*), and fast steps are taken at all these iterates too.

e The entire sequence converges superlinearly to the limit point (z*, ;\, y*).

Proof. (Theorem 3.3) To prove the assertion that the initial choice of fast step
length (18) is eventually always accepted, we collect a few relevant facts.

First, note from the choice of constant d3 in the proof of Lemma 5.6 and the
fact that 84 € (0,d3] that Df(z,A) and Dg(z) are Lipschitz continuous on an open
neighborhood of §(d4). We denote the relevant Lipschitz constant by L.

Second, note that the sequence {u} /' } decreases monotonically to zero. On safe
steps, we have pig41 < pg while ¢ (and therefore the denominator) remain unchanged.
On fast steps, we have from the relationship between p, 4, and 7 in (14) that

(102) i’z“ < [inf’z < Mk _ L
Y T A T2 240

If there are infinitely many fast steps, the sequence 1s driven to zero because the
factor 1/2 in (102) occurs infinitely often. If there are only finitely many fast steps,
the denominator 4'* eventually settles down to a constant, and the sequence is driven
to zero by the fact that pug | 0.

We now proceed with the main part of the proof. Let {k; };?OIO be the sequence of
indices such that

(103) lim (2% AFi yFi) = (2% A y).

J—00

Now choose the index .J sufficiently large that the following conditions are satisfied:

(104a) (F7, Ny e Q(da/4),

(104b) e, < %,

(104c) we, < (1_7)%“55_%“)’
(104d) T < @/2?#)03
(104e) pe, /3 < p/2,

(104f) Pry < 2%3

Let us first show that the value o = l—uzj/"ytkl from (18) satisfies the condition
(19a); that is,
(105) Ai(@)yi(@) > (Ymin + 7 (Ymax — imin) ) 1(@).

(We omit the subscript &k here and later for clarity.) For the left-hand side of (105),
we have

Ai(@)yi (@) (Ai + AN (yi + aAy;)
Aiyi(1— ) + a2 AN Ay;
9

(Ymin + :Yt (Ymax = Ymin))(1 — a)pt — CONZ’

v
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where we used the relationships (40), (98), and A;y; > v with v = Ymin + 5 (Ymax —
Ymin ). For the right-hand side of (105), we have by the same logic that

pla) = (A+aANT(y+aly)/P
< (L=a)u+a®||Ayllll AN/ P
(106) < (1-a)urt Cip”

Hence, for the condition (105) to hold, it suffices that

[PYmin + 'yt(')/max - 'Ymin)](l - OZ)IJ - Cg/iz
> [PYmin + :YH_l ('Ymax - 'Ymin)](l — Ol)/J + Cg/iz.

This inequality is equivalent to

(107) (7" = 7™ (Ymax — Ymin)t(1 — ) > 2C3p*.

By substituting 1 — a = u’ /4" from (18) and rearranging, we find that (107) is in
turn equivalent to (104c). Hence condition (19a) is satisfied.

We need the Lipschitz continuity assumption for the second condition (19b). Be-
cause of (10) and the definition of 5 in the fast routine, we can rewrite this condition
as

(108) [1f(z(a), M) < (1+57)Bu(a),

where the current point (z,A) has ||f(z,A)]] < Bu. Taylor’s theorem can be used
to expand f(z(a), A(«)), exactly as in (28). The difference here is that Lipschitz
continuity can be used to obtain a tighter estimate of Ar;. Note that the arguments
of Df in (30) lie within the domain of Lipschitz continuity, since by (104a), (104b),
and (98), we have

I(z + 6aAz, A+ aAX) — (2%, N)]]
< Nz =25 A= N+ 1Az, AN)|| < 8a/4+ Copg, < 8a/2.

Therefore we have from (29) and (98) that

1
[Ar]] < SLI(Az AN < SLCGp7,

N | —

As in (28), it follows that

1
17(z(a), M)l < (1= @) B+ S LCGp*.
Meanwhile, a trivial change to the estimate (106) yields

ple) > (1= a)p — C5p®.

From these last two inequalities, we see that condition (108) is satisfied if
1 _
(1= )+ 5 LCGH" < (1+ 581 = a)u = Cop’].
Because (1 4+ 4"t1)3 < Bumax, from (21), this last condition in turn is satisfied if

| ,
FLCoH" < ATIA(1 = o) = Fnax Copt”.
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By substituting from (18) and using the bound Fyin < 3, we find that this last
condition is implied by (104d), so we conclude that (108) is also satisfied. By similar
logic, we can show that the same conditions (104) also guarantee that the remaining
condition (19¢) holds.

Finally, we verify that pr,4+1 < ppi,, so that the fast step is accepted by the
main algorithm. Because of (106), this condition is satisfied if

(1= a)u+Copu’ < pp,
which, by substitution of (18), is equivalent to

pIY+Cip < p.

Conditions (104e) and (104f) together guarantee that this conditions holds, so we are
done.

At this point, we have shown that a fast step 1s taken from (z’”, pUER y’”). The
new iterate does not move away too far from the limit point, if at all, because

||(Zk]+1a Ak]+1’ ykj-l-l) _ (Z*,X, y*)H

17 N7, 550 = (= A, )+ A, AN, Agh)|
(54/4 + CO/’LkJ

d4/2,

ININIA

where the last inequality is a consequence of (104b) and (98). Hence, we have that
(2R NRoHL hatly € §(64/2), and so the estimate (98) applies again at iteration
kj+ 1. The remaining conditions (104b)—(104f) continue to apply at the new iterate,
and the same logic as above can be used to show that a fast step is again taken from
this iterate. Because of these two consecutive fast steps, we have

(109) fik 52 < P41 < PP Hg-

We can continue in this vein, inductively, to show that only fast steps are taken from
this point onwards, and that the iterates never leave the neighborhood S(%é). The
last statement follows from (98) and (109), since we have for all s > 0 that

distsze, (574 M%) < 6/4 4 Colpe, + per + -+ ey s-1)
< 8/4+ Cop,(T+p+p"+ )
. o
< /4
> / + 1_pﬂkj
< §/2.

We now examine the rate of convergence of {yy}. From (18) and (106), we have
for all £ > k; that

i
Hi+1 < ph (7711) + C3 i

Hence for some K > kj, the first term on the right-hand side dominates the second,
and we have

pegr < pptt/A, forall k> K.
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The proof that {ug} converges to zero with Q-order at least 14 7 follows by standard
arguments; see Wright [15, Theorem 6.3] and Wright and Zhang [19, Theorem 5.2].
Hence, part (i) of the theorem is proved.

For (ii), we show that the sequence of iterates is Cauchy. For all Ky > K;
sufficiently large, we have from (98) that

K>
||(ZK2’AK2’yK2) _ (ZKI,AKl,yKl)” S Z Oék||(AZk,AAk,Ayk)||
k=K,
< Co Z ik
k=K,
< Copr, [T+ p+p"+ -]
1
(110) = C’opKll— — 0 as K| — oo.
—p

Hence the sequence is Cauchy, so it converges to a limit point, which must be the
limit point (z*, A, y*) of the subsequence (103). Its R-order follows immediately from
(110) and the result of part (i). O

6. Existence of a Limit Point. In our main result, Theorem 3.3, we assumed
that a limit point of the sequence {(2*, A* y*)} actually exists. This condition will
follow immediately if we can show that the sequence is bounded, by compactness.

We show in Lemma 6.1 that boundedness of the solution set & is a consequence
of boundedness of the feasible set C defined in (2). Then, in Lemma 6.2, we show that
boundedness of the iterate sequence {(z%, \¥, y*)} also holds. Thus if boundedness of C
is added to the standing assumptions, the algorithm is guaranteed to converge globally
and superlinearly. Given that the method of [11] has these convergence properties
without boundedness of C, though under the assumptions that C is polyhedral and ¥
satisfies a special property called the scaled Lipschitz condition, it would be interesting
to investigate global convergence without boundedness of C.

LEMMA 6.1. Suppose that Assumptions 1 and 3 hold and that the set C defined by
(2) is bounded. Then the solution set S is nonempty, bounded, closed, and therefore
compact.

Proof. By Theorem 3.1 of Harker and Pang [3], the set of vectors z* that solves (1)
i1s nonempty. This set is also bounded because of the restriction z* € C. Boundedness
of the solution components y* follows trivially because y* = ¢g(z*) and ¢ is smooth.

We prove boundedness of the optimal A* components by contradiction. If the
claim does not hold, we can choose a sequence of solutions (2%, ;\k, y") € S such that
||/A\k||Oo 1 00. (The other components 2 and g* remain bounded, by the argument of
the preceding paragraph.) We can assume without loss of generality that

(25 4F) = (2,9), with 2€C, §>0,
and

AP - - -
R — A, with [[Mlo=1, A>0.

Moreover, since (;\k)Tg(ék) = 0 for all k, we have that

(111) A >0 = gi(?:')zo.
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Because of (3) and (4), we have that

®(") + ZDgl(,%’“);\f =0, for all k.
i=1
Dividing by ||/A\k||Oo and taking the limit as & — oo, we have

(112) 0= iDgi(E);\i = Y Dg(®)A

ilAi>0

Given the Slater point z (Assumption 3), convexity of g, and the property (111),
we have that

(113) XA >0 = 0> gi(2) > 0:(2) + Dgi()T (7 = 2) = Dg: ()T (z - 2).
But this inequality implies that

> (2= 8T Dgi(2)Ai <0,

ilAi>0

which contradicts (112). Hence, {;\k} cannot be unbounded, so our proof is complete.

Closedness of § follows immediately from the definition. 0O

LEMMA 6.2. Suppose that Assumptions 1 and 3 hold and that C s bounded. Then
the iterate sequence {(2%, M, y*)} is bounded.

Proof. We start by showing that there is a constant B > 0 such that g;(2*) < B
for all ¢ and k. From this observation together with Assumption 3, we deduce that
{z*} is bounded. Boundedness of {y*} follows directly from boundedness of {z*}.
The final part of the proof uses an argument like that in the proof of Lemma 6.1.

As C is bounded, we have from [10, Corollary 8.7.1] that the set {z : ¢;(z) < B}
is also bounded for any constant B > 0. Now (2%, \* | y*) € Q for all k, hence we have
from (10), (22), and y* > 0 that

gl(zk) = [rl;]l - yf S [rl;]l S ||7“/;|| S Bmaxf'tk S Bmax/’to'

So if we define B = Bumaxjto, we have g;(2*) < B for all k = 0,1,2,... and i =
1,2,...,m, yielding boundedness of {z*}.
Boundedness of {y*} follows immediately from (10), since

1711 = [l = (") < Brnacito + [la ().

The right-hand side of this expression is bounded because {z*} is bounded and g is
continuous.

The remainder of the proof emulates the proof of Lemma 6.1 closely. Assume for
a contradiction that {\*} is unbounded. Because {z*} and {y*} are bounded, we can
choose a subsequence K such that as £ — oo, k € K,

(=", y) = (2,9)
and [|A\*||e 1 co such that

AR . . .
A with (Mo =1, A>0.
P e .
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Moreover if A; > 0 we must have gi(2) > 0 — a substitute for (111) in the proof of
Lemma 6.1 — since otherwise we would have

. . _ k A' (3
poz, Mm  pp> lm o [l digi(2)/ P T oo,

Also, from (4) and (10), we have that
19(=) + >~ Dgi (PN = [Pl < Brmax o,
i=1

hence dividing by ||[A*||oo and letting & — oo, k € K, yields (112). The statement
(113) now holds with greater-than-or-equal to replacing the final equality, and the
subsequent contradiction follows. 0O

We conclude with a corollary of Lemma 5.10 that throws additional light on our
assumptions.

LEMMA 6.3. Suppose that the standing assumptions are satisfied. Then for any
(z*,X) € S, », we have

) e P 5] 16]

if and only if 62 = 0 and X € ker Dgp(2*)T. In particular, the Jacobian matrir in
(114) is invertible if and only if Dgp(z™) has full row rank.

Assumption 6 i1s a weak version of the better-known condition that the “active”
submatrix (114) of the Jacobian (6) is invertible—an assumption that is made in most
local convergence analyses of nonlinear programming algorithms including Wright and
Ralph [18]. Allowing nonzero vectors §A in the null space of the above Jacobian
matrix amounts to allowing nonunique optimal multipliers A; this flexibility relies on
the constant rank condition, Assumption 7. The main point of the current paper
is that superlinear convergence still holds when the weaker (but more complicated!)
assumptions of this paper are used instead of the standard ones.

7. Computational Experience and Discussion. We now discuss some com-
putational experience with the algorithm on some small test examples. Our basic
finding is that numerical roundoff effects interfere with the results of the analysis
above, just as they interfere with superlinear convergence of interior-point methods
for linear programming and linear complementarity problems (see Wright [16, 17]).
The theoretical behavior can, however, be observed on carefully designed problems
that are not affected by roundoff. We conclude by discussing some open questions
arising from our computational experience and from the theoretical analysis of this
paper.

In our implementation of the algorithm of Section 2, the parameters (14) were
chosen as follows:

Xsafe = -9, Xfast — 98, ¢ =.01, a=.95,
K:'la T= '5a ﬁmin = 10||(r?arg)||/ﬂ0a
Ymin = -0001, Ymax = .01, 5= .49, p=min(.2, min((9)*/7,1 - k)).
(As indicated, we used different values of x for the fast and safe step procedures.)
We present results for three example problems, each of which is stated here as

a convex program and reformulated as an NCP (3), (4) by the procedure outlined

after (7).
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Ezrample 1.
(115) min z; 4+ z2 s.t. (21 — 1)2 + (22 — 1)2 <2,

for which the NCP reformulation has N =2, P =1, and
2 2 1
g(z) = (71 = 1)" 4+ (22— 1)" = 2, d(z) = [ 1].

The unique solution for this problem is z* = 0 with unique multiplier A* = 1/2. The
Jacobian of the active constraints Dgp(2*)? has full rank of one at the solution, so
this problem satisfies the strong nondegeneracy condition that is usually assumed to
hold in conventional superlinear convergence analysis.

Ezxample 2.

. (21 — 2)% + 22 4
(116) min z7 s.t. [ (51— 4)2 4 =2 < 16 |

This problem has a unique solution in the z component, namely, z* = 0. The two cir-
cular constraints become linearly dependent at the solution, however, and the optimal
multiplier set is determined by the condition

®(z*) 4+ Dg(z*)T X =0, A>0,
which in our case reduces to

All standing assumptions except Assumption 7 are satisfied by this example. The
active constraint Jacobian is

(118) Dys(z)T =2 [ EZ :i; Z ] ,

which clearly has rank one at the solution z* = 0, but rank two at some point in any

neighborhood of this point.
Ezxample 3.

(119) min 27 + 2122 + 225 + 21 + 22 s.t. 22> 0, $(21 — 2)* + $(22 — 1)* < 5,

1
2

for which the NCP reformulation has N =2, P = 3, and

—2

g(Z) = —X2 ;
35z =27 = g( - 1)
221+ 22+ 1

(=) [21-1-422-1-1]’

where ®(+) is the gradient of the objective function in (119). The solution is z* = (0, 0).
All three constraints are active at this point, so that their gradients are linearly
dependent. However, the matrix DgB(z)T € R¥*® has constant column rank 2, so the
CRCQ Assumption 7 is satisfied. The optimal multiplier set is

(120) Sy = {(1-2Xx3,1—2X3,X3) : 0< A3 < 1)
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TaABLE 1
Asymptotic behavior for Example 1, the nondegenerate problem

Asymptotic behavior for Example 2, which does not satisfy Assumption 7

Iteration | Step Type 1t AXg]/ 1
i1 fast 984(-4)  .172(+1)
12 fast 199(-5)  .175(+1)
13 fast 17(-7)  176(+1)
14 fast 108(-10)  .176(+1)
15 | terminate 613(-15)
TABLE 2

Tteration | Step Type 1t AX5]]/ 1
5 fast B44(4)  .903(-1)
6 fast A403(-6)  .896(-1)
7 fast 522(-9)  .239(+2)
8 fast A98(-13)  .262(+10)
9 | terminate .747(-16)

We leave it to the reader to verify that the other standing assumptions hold, though
we mention that the first invertibility condition of Assumption 6 is immediate because
the components of g(z) are convex while ¢ is strictly convex.

For all three problems, the algorithm was started at the initial point

' =l (1,1, DT

The algorithms were terminated when y fell below 10714

The behavior of the algorithm during the last few iterations is tabulated in Ta-
bles 1-3. Note that the asymptotic convergence rate is quite rapid in each case, though
not obviously superlinear. Fast steps were eventually accepted at all sufficiently ad-
vanced iterations.

Recall that the key estimate used in deriving our superlinear convergence result
was that the fast (affine-scaling) step should be O(g) in norm (see (38)). This estimate
is obtained trivially for nondegenerate problems, in which the matrix in (114) is
invertible and the matrix in (12) approaches a nonsingular limit (see Wright and
Ralph [18, Lemma 5.2]). Our analysis in this paper shows that the estimate holds
too if our standing assumptions, including the CRCQ condition in Assumption 7 are
satisfied. When the CRCQ fails to hold, however, the analysis of Section 5.4 suggests
that up and vy—and therefore AAg and Ayy—may not longer satisfy this estimate.
Since A = 0 in each of our examples, we have tabulated the ratio of [|[AAg||es to p to
check that this estimate holds.

As expected ||AAg|lec = O(p) for the nondegenerate problem, Example 1, for g
arbitrarily small. For Example 2, which does not satisfy the CRCQ, this estimate
obviously does not hold; the ratio ||AAg||eo/#t blows up for small g. This observation
is consistent with the theory of Section 5.4. The result that requires explanation is
the one from Table 3, which shows the same kind of blowup of the ratio as in Table 2,
even though Example 3 satisfies the standing assumptions of this paper. This blowup
is due to the roundoff error associated with solving the system (12) in the presence of
roundoff error. Recent investigations into the stability of linear equations solvers in

(ZO,AO) = (1a 1a Ty 1)Ta

interior-point methods for linear programming and linear complementarity problems
by Wright [16, 17] have shown that similar phenomena occur in these cases too. Tll
conditioning in the linear systems arising in those problems makes it impossible to cal-
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TABLE 3
Asymptotic behavior for Erxample 3, which satisfies the standing assumptions of this paper

Iteration | Step Type 1t AXg]/ 1
7 fast 279(-4)  .702(+1)
8 fast 305(-6)  .7T06(+1)
9 fast 704(-9)  .819(+1)
10 fast A59(-12)  .205(+9)
11 | terminate .106(-16)

culate steps that satisfy the O(u) estimate in the presence of roundoff error when the
linear program is degenerate, despite the theoretical analysis of superlinear conver-
gence which indicates that the exact step is O(p). For both linear programming and
the monotone variational inequalities considered in this paper, superlinear algorithms
continue to have practical importance. Even when strictly superlinear convergence
behavior is not observed—as occurs for many degenerate problems—algorithms that
are theoretically superlinear tend to exhibit rapid linear convergence.

The roundoff error in the computed solution to (12) are most marked in the
components that lie in the “near null space” of the coefficient matrix. Under As-
sumptions 1-6 of this paper, this space corresponds to ker Dgs(z*)T; that is, the
roundoff errors are largely confined to the projection of of A)g into ker Dggs(2*)7.
Geometrically, the computed step AAg tends to become tangential to the polyhedral
set of optimal multipliers §§. For instance, the final computed step for Example 3
(the fast step computed at iteration 10) has AX = (.326,.163, —.163) x 10~%, which
corresponds to a move along the line segment defined by (120). Similarly, the final
computed step for Example 2 (at iteration 8) has AX = (—.130,.065) x 1073, a move
along the line segment defined by (117). This observation explains why the large size
of these steps does not interfere with fast convergence of the algorithm. The conver-
gence of uy to zero is governed more by the non-tangential component of AAg and, in
both Examples 2 and 3, this component continues to satisfy the O(yu) estimate even
for the smallest values of p.

It would appear from our theoretical analysis and computational observations
that the projection of the eract step A)g into ker Dgp(2*)T is guaranteed to be O(y)
when the CRCQ assumption is satisfied but not otherwise. For the computed step,
however, the presence of roundoff clouds the distinction between these two cases; the
projected step may be much larger than p regardless of whether Assumption 7 is
satisfied.

These observations raises the following open question: Can theoretical superlin-
ear convergence of the algorithm be proved under an even weaker condition than
Assumption 77 As noted earlier, conventional superlinear convergence analysis for
interior-point methods (in both linear and nonlinear cases) makes heavy use of the
O(p) estimate for the fast step (38), which may no longer hold when Assumption 7
is relaxed. Nevertheless, it may be possible to recover superlinear convergence based
on an O(p) estimate of some projection of the fast step.

We close with a glimpse of the algorithm’s behavior in the absence of roundoff
error by considering a modification of Example 2, in which the initial value of the z5
component is set to zero. All subsequent iterates of the algorithm retain z; = 0, so
that the second column of Dgp(2)T is zero and this matrix has constant rank one at
all iterations. Numerical effects do not contaminate the projection of the computed
solution of A\g into ker Dgp(2)? in this particular case, since, in contrast with Ta-
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TABLE 4
FEzample 2 with zg = 0: Asymptotic behavior

Iteration | Step Type 1t |AXg]]/ 1
5 fast 191(3)  .506(-1)
6 fast 265(-5)  .500(-1)
7 fast 881(-8)  .148(00)
8 fast 344(-11)  .600(-1)
9 | terminate .543(-16)

bles 2 and 3, the zero column in this matrix makes it unnecessary to perform any
arithmetic on the corresponding column of the matrix in (12) during the factoriza-
tion. We see in Table 4 that the estimate AAg = O(p) holds even for small values of
1, even though this problem is degenerate and does not satisfy the CRCQ.
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